skip to main content


Search for: All records

Creators/Authors contains: "Hoffmann, Sharon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    While substantial changes in thermohaline circulation related to deglacial climate variability are well established, the role of this circulation in Holocene climate variability remains uncertain. Here we use two dynamical proxies,231Pa/230Th ratios and mean sortable silt size (), to reconstruct Holocene bottom water circulation at the intermediate‐depth Carolina Slope. We find no substantial change in deep current speed or231Pa export at this site during the Holocene, suggesting consistent231Pa export via the Deep Western Boundary Current.shows increasing millennial‐scale variability in the middle‐late Holocene, which may reflect Labrador Sea Water contribution to current speed. We conclude that deepwater export from the North Atlantic has remained remarkably stable during the Holocene, decoupled from changing rates of specific water masses, while production of these water masses varied at millennial to centennial time scales. The persistence of the large‐scale overturning may reflect the ocean's stabilizing influence on Holocene climate.

     
    more » « less
  2. Abstract

    230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of230Th as a constant flux proxy. Anomalous230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).

     
    more » « less